Frequency Optimization for Enhancement of Surface Defect Classification Using the Eddy Current Technique
نویسندگان
چکیده
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances.
منابع مشابه
Design of Nondestructive System for Hardness of Carbonitrided Steel Parts Using Eddy Current Testing Method: Case study on the Tappet Parts
In this paper, a non-destructive eddy current test system was designed to evaluate the surface hardness of the carbonitrided steel parts. For this purpose, various samples of the tappet were used after the surface hardening and grinding operations as control samples and, if necessary, were subjected to destructive and non-destructive tests. Microstructural studies were performed with a microsco...
متن کاملProtection Scheme of Power Transformer Based on Time–Frequency Analysis and KSIR-SSVM
The aim of this paper is to extend a hybrid protection plan for Power Transformer (PT) based on MRA-KSIR-SSVM. This paper offers a new scheme for protection of power transformers to distinguish internal faults from inrush currents. Some significant characteristics of differential currents in the real PT operating circumstances are extracted. In this paper, Multi Resolution Analysis (MRA) is use...
متن کامل1 Transfusion of Time - Domain and Frequency - Domain Eddy Current Signals
Conventional eddy current using single-frequency excitation has limited material characterization capabilities. Enrichment of the spectral information of the signal with techniques such as multifrequency or swept frequency inspection could be employed to improve the inspection process. Broadband excitation is also implemented with time-domain inspection using pulsed eddy current PEC. The spectr...
متن کاملEmploying dual frequency phase sensitive demodulation technique to improve the accuracy of voltage measurement in magnetic induction tomography and designing a labratoary prototype
Magnetic induction tomography (MIT) is a promising modality for noninvasive imaging due to its contactless technology. Being a non-contact safe imaging technique, MIT has been an appropriate method in compare to other electrical tomography. In this imaging method, a primary magnetic field is applied by excitation coils to induce eddy currents in the material to be studied and a secondary magnet...
متن کاملDesign Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm
This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...
متن کامل